
Main Memory and Cache Performance of
Intel Sandy Bridge and AMD Bulldozer

Daniel Molka Daniel Hackenberg Robert Schöne
Center for Information Services and High Performance Computing (ZIH)

Technische Universität Dresden, 01062 Dresden, Germany
{daniel.molka, daniel.hackenberg, robert.schoene}@tu-dresden.de

Abstract
Application performance on multicore processors is seldom con-
strained by the speed of floating point or integer units. Much more
often, limitations are caused by the memory subsystem, particu-
larly shared resources such as last level caches or memory con-
trollers. Measuring, predicting and modeling memory performance
becomes a steeper challenge with each new processor generation
due to the growing complexity and core count. We tackle the
important aspect of measuring and understanding undocumented
memory performance numbers in order to create valuable insight
into microprocessor details. For this, we build upon a set of so-
phisticated benchmarks that support latency and bandwidth mea-
surements to arbitrary locations in the memory subsystem. These
benchmarks are extended to support AVX instructions for band-
width measurements and to integrate the coherence states (O)wned
and (F)orward. We then use these benchmarks to perform an in-
depth analysis of current ccNUMA multiprocessor systems with
Intel (Sandy Bridge-EP) and AMD (Bulldozer) processors. Using
our benchmarks we present fundamental memory performance data
and illustrate performance-relevant architectural properties of both
designs.

1. Introduction
Multicore technology is the most important factor that drives to-
day’s microprocessor performance improvements. Providing cache
coherence becomes a steeper challenge with each new proces-
sor generation and the mandatory increase in core count. Signif-
icant efforts are necessary to continue to provide the coherent
caches that programmers are accustomed to. The utilized coher-
ence mechanisms have a significant impact on memory perfor-
mance. Therefore, the ever-growing complexity of the memory
subsystem with several cache levels that need to be exploited ef-
ficiently is challenging to any developer striving for optimal appli-
cation performance. Unfortunately, many implementation details of
these memory subsystems–particularly with respect to performance
characteristics–are undocumented. This complicates performance
optimization, but more importantly it is harmful for many ongoing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MSPC ’14, June 13, 2014, Edinburgh, Scotland.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-nnnn-nnnn-n/yy/mm. . . $15.00.
http://dx.doi.org/10.1145/2618128.2618129

research activities in this field that predominantly rely on modeling
approaches [6, 17] to evaluate and compare innovative approaches
and implementations.

In this paper we present extensions to our latency and band-
width benchmarks [8, 21] that support measurements for arbitrary
locations in the memory subsystem. Using these benchmarks, we
present an in-depth evaluation of the memory performance of Intel
Sandy Bridge-EP and AMD Bulldozer processors. On the Sandy
Bridge-EP platform, the L3 design has been changed significantly
since the previous generation with the introduction of L3 slices
that are connected by a ring bus. With the step from 128 Bit to
256 Bit SIMD width, the bandwidth demands to feed the cores grew
considerably. The Bulldozer architecture also features a number of
important architectural changes compared to the previous proces-
sor generation, most notable the module design that integrates two
cores with shared resources. Furthermore, the cache coherence pro-
tocol and the probe filtering mechanism have been modified. Our
analysis reveals in detail how the microarchitectural differences
tremendously affect the performance of the memory subsystem.

2. Related Work
Performance measurements are common practice to analyze im-
plementation details of the memory hierarchy. While STREAM is
a well-established memory bandwidth benchmark [19], a number
of limitations are problematic for any in-depth analysis, e.g. no in-
herent NUMA support and the lack of latency measurements. The
benchmark set lmbench [20] can be used to measure key metrics
of UNIX systems but lacks support for measuring remote cache ac-
cesses considering different coherence states. Measurements that
include NUMA characteristics and coherence states are available
for outdated hardware [9]. Agarwal et al. state that memory latency
can be hidden with keeping a number of read request in flight as
long as the number of outstanding requests is sufficient [4]. Other
notable work includes the extensible x86 benchmark suite likwid-
bench [25], which is part of the likwid tool suite [24]. It features
bandwidth benchmarks and extensive NUMA support but lacks op-
tions for in-depth cache analysis and latency measurements.

A set of sophisticated memory benchmarks that take caches and
coherence effects into account has been presented in [21], along
with results for an Intel Nehalem dual socket node. This work
has been extended in [8] to include an in-depth comparison of In-
tel Nehalem and AMD Shanghai. These processor generations are
now outdated, and newer CPU generations differ significantly from
these systems. Moreover, AVX instructions as well as new coher-
ence states have been introduced, effectively rendering these bench-
marks unfit for state-of-the-art systems. We therefore extended the
benchmarks introduced in [8, 21] in this work, and analyze the
memory performance of current CPU generations.

System Dell PowerEdge R720 SuperMicroA+ Server 1042G-LTF
Processor 2x Intel Xeon E5-2670 (Sandy Bridge-EP) 4x AMD Opteron 6274 (Bulldozer)

Cores 16 (2x 8), 32 threads with HyperThreading 64 (4x 2x 81), FPU shared by 2 cores
Base (turbo) clock2 2.6 GHz (up to 3.3 GHz) 2.2 GHz (up to 3.1 GHz)

L1D/L2 cache 32 KiB per core / 256 KiB per core 16 KiB per core / 2 MiB per compute unit
L3 cache 20 MiB per chip 8 MiB per chip (2 MiB used as probe filter)

Interconnect QPI 1.1, 8 GT/s HyperTransport 3.1, 6.4 GT/s
Memory channels 4x PC3-12800R per socket 2x PC3-12800R per die (4 per socket)

Memory size 32 GiB, 8x 4 GiB (4 DIMMs per die) 64 GiB, 16x 4 GiB (2 DIMMs per die)

Table 1. Hardware configuration of test systems

3. Test Systems and Benchmarks
We examine two multi-socket x86 servers with state-of-the-art mul-
ticore processors from Intel and AMD. Both are shared memory
systems with point-to-point connections between the processors.
However, their microarchitectures as well as higher level processor
design differ considerably. The configuration is detailed in Table 1.

3.1 Intel Xeon 2600 - Sandy Bridge
The Intel Xeon E5-2600 family [13] is based on the Sandy Bridge
microarchitecture. Each core has dedicated L1 and L2 caches as
well as its own FPU. The L1 data cache is a write back cache. It
can handle two 128 Bit reads and one 128 Bit store per cycle. The
FPU can execute two 256 Bit instructions per cycle, one addition
and one multiplication. With HyperThreading enabled, two threads
can run per core, and both share most resources.

Figure 1a depicts the Xeon E5 processor. The eight cores,
20 MiB L3 cache, a quad channel memory controller, and two
QPI interconnects are implemented on one die. The L3 cache is
inclusive of the cores’ L1 and L2 caches and operates at the core
frequency. It is divided into multiple slices that are accessible by
all cores. Multiple rings connect the cores with the L3 slices, mem-
ory controller, and QPI links. QPI is implemented in version 1.1,
operating at 8.0 GT/s. The Intel system has two sockets that are
connected via the two QPI links as depicted in Figure 2a. Intel ex-
tends the MESI protocol with the Forward state [10], which enables
forwarding of shared clean cache lines. A home-snoop-protocol is
used [14]. However, coherence traffic is not a significant bottleneck
on the two socket system.

3.2 AMD Opteron 6200 - Bulldozer
The AMD Opteron 6200 [1] series is based on the Bulldozer mi-
croarchitecture. It is based on dual-core compute units that share
the instruction fetch and decode units, floating point unit, L1 in-
struction cache, and the L2 cache. Each core has its own out-of-
order engine, integer execution units, and write-through L1 data
cache. Each L1D provides two 128 Bit read ports and one 128 Bit
write port. The FPU supports fused multiply-add instructions and
executes up to two 128 Bit instructions per cycle. 256 Bit AVX in-
structions are split into two 128 Bit parts. Integer SIMD instructions
are also executed in the shared FPU.

Figure 1b shows the organization of the 16-core AMD Opteron
processor. It consists of two eight-core dies that are internally con-
nected via HyperTransport links. Each die comprises four compute
units, 8 MiB3 L3 cache, a dual channel memory controller, and four
HyperTransport links. The shared L3 cache is directly connected to
the system request interface (SRI) and operates at the northbridge
frequency of 2 GHz. It is neither inclusive nor strictly exclusive
of the L2 caches. The HyperTransport links operate at 6.4 GT/s4

(5.2 GT/s for I/O). They can be used as 16-bit (ganged) or 8-bit
(unganged) links. Each socket supports four 16-Bit HT links that
are connected to the different dies as depicted in Figure 1b.

1 4 sockets, 2 dies per socket, 8 cores per die
2 all measurements performed at base clock
3 2 MiB used as directory cache by the HT Assist [5]
4 according to MSR readings and definitions in [2, Chapter 3.3]

8-Core Sandy Bridge-EP package

8-Core Die

Core

0

Memory Controller

L1 L2 L3

QPI
System

Interface

D
D

R
3

 A

D
D

R
3

 B

D
D

R
3

 C

D
D

R
3

 D

Core

7
L1L2L3

Core

1
L1 L2 L3

Core

6
L1L2L3

Core

2
L1 L2 L3

Core

5
L1L2L3

Core

3
L1 L2 L3

Core

4
L1L2L3

I/O

(a) 8-core Sandy Bridge-EP

16-Core Interlagos package

8-Core Die

Core

0

System Request Interface

L3 Cache Crossbar

L1

L2

Memory Controller

Core

1

L1

Core

2

L1

L2

Core

3

L1

Core

4

L1

L2

Core

5

L1

Core

6

L1

L2

Core

7

L1

HyperTransport

8-Core Die

Core

8

System Request Interface

L3 Cache Crossbar

L1

L2

HyperTransport

Core

9

L1

Core

10

L1

L2

Core

11

L1

Core

12

L1

L2

Core

13

L1

Core

14

L1

L2

Core

15

L1

Memory Controller

D
D

R
3

 A

D
D

R
3

 B

x
1

6 x
1

6

NCx
8

x
8

x16

x8

x
8

I/O

D
D

R
3

 C

D
D

R
3

 D

x
8

x
8

x
8

HT3 HT1 HT0

HT2

HT3 HT0 HT2

HT1

(b) 16-core Bulldozer multi-chip-module

Figure 1. Composition of multicore processors: The 8-core Xeon processor (left) is implemented on a single chip. In contrast, the 16-core
Opteron (right) consists of two 8-core chips in one package. Therefore, a single Opteron processor already has two NUMA nodes

Node 0 Node 1

I/O I/O

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

(a) 2P Intel Sandy Bridge (Xeon E5-2600 family)

Node 1

Node 0

Node 3

Node 2

Node 5

Node 4

Node 7

Node 6

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

NC NC

I/O NC

(b) 4P AMD Bulldozer (Opteron 6200 series)

Figure 2. Comparison of NUMA topologies: Since each Xeon
processor has an integrated memory controller, the two socket Intel
system also has two NUMA nodes. As each Opteron processor
already has two NUMA nodes (see Figure 1b), the four socket
AMD system consists of eight NUMA nodes. While the sockets
are fully connected, the chips are not.

As each AMD processor already is a dual-node MCM, the four
socket system contains eight NUMA nodes. Each die is directly
connected to the second die in the socket via a 16-Bit link5 and to
three dies in other sockets via 8-Bit links. There are two subsets of
four fully connected nodes: {0,2,4,6} and {1,3,5,7}. Data transfers
between those subsets require additional HT hops, unless the nodes
are in the same socket. Figure 2b illustrates this complex design.

AMD extends the MESI protocol by implementing the Owned
state [3, Chapter 7.3.], which allows sharing of dirty cache lines
without writing them back to memory. The Bulldozer microarchi-
tecture apparently also implements the ModifiedUnWritten (MuW)
state [16], which enables a faster transitions to Modified if multi-
ple processors perform read-modify-write operations. The resulting
protocol is depicted in Figure 3. The MuW state is reached when
a Modified cache line is read by another core. Instead of changing
its state to Owned and insert a Shared copy in the requesting core–
as would be the case in the MOESI protocol–the original copy is
invalidated and the requester gets the line in the MuW state which
allows modification of the cache line without further action. If this
dirty MuW copy is read again by another processor, it is forwarded,
marked Shared, and inserted into the second requesters cache in the
Owned state.

AMD implements a home-snoop-protocol, in which the node
that contains the requested physical address in its memory is re-
sponsible for maintaining cache coherence. This so-called home
node forwards requests to all nodes that could have a copy of the
requested memory address. As broadcast messages are extremely
expensive in a system with eight nodes, current multinode AMD
processors feature a probe filter to reduce the coherence traffic. This
so-called HT Assist uses a portion of the L3 cache which reduces

5 the 8-Bit link connecting the dies is disabled [2, Chapter 2.12.1.5]

Read M
iss, Probe M

iss

Probe

Read Hit

W
rite Hit

W
rite

 H
it

Pro
be W

rit
e H

it
Probe W

rite Hit

P
ro

b
e
 W

ri
te

 H
it

I

S E

O

M

Read Hit,

Probe

Read Hit

MuW

R
e
a
d
 M

iss, P
ro

b
e
 H

it M

Probe
Read Hit

W
rite

 H
it

P
ro

b
e
 W

rite
 H

it

R
e
a
d
 M

is
s,

 P
ro

b
e
 H

it
M

u
W

/O
/E

/S

Read Hit, Write Hit

P
ro

b
e

 R
e

a
d

 H
it

Read Hit

Read Hit

Read Hit

P
ro

b
e

 W
rite

 H
it, P

ro
b

e
 R

e
a

d
 H

it
W

rite
 M

is
s

W
ri
te

 H
it

Figure 3. Extended MOESI protocol with MuW state [16]67: The
protocol is designed to always migrate the ownership of a cache line
to the last requestor. Memory write requests always transition to
Modified. Furthermore, memory read requests that involve probing
other nodes always insert an MuW or Owned copy in the requestor
and leave a Invalid or Shared copy in the previous owner.

the usable L3 size [2, Chapter 2.9.4.1]. Lepak et al. [16] describe an
optimized version of the probe filtering mechanism, that is closely
related to the MuW state. The exact implementation of the coher-
ence protocol and filtering mechanism is not disclosed in the pro-
cessor manuals. However, the modifications we had to implement
to make our benchmarks work on the Bulldozer architecture reveal
that the MOESI protocol has in fact been altered. The modifications
were done based on the protocol described in [16] and lead to the
expected results. We therefore assume that this protocol is used.

3.3 Synthetic Microbenchmarks
We use a set of microbenchmarks [8, 21] to perform a low-level
analysis of each system’s memory performance. They are in-
tegrated into the BenchIT [15] framework and are available as
open source. Highly optimized assembler routines and time stamp
counter based timers enable precise performance measurements
of data accesses in shared memory systems with 64 Bit x86 pro-
cessors. The benchmarks are parallelized using pthreads and indi-
vidual threads are pinned to single cores using sched setaffinity().
Coordinated data access sequences are performed in consideration
of the coherence protocol to transfer data into a selected cache with
a certain coherence state. Latencies and bandwidths of accesses to
any core’s caches and any socket’s memory can be measured as
well as the aggregated bandwidth of shared caches and memory
controllers.

6 The patent does not reveal the coherence state after read requests that do
not require a probe of other nodes (Probe Hit S). Thus, there could also be
a transition from Invalid to Shared if the probe filter indicates that there are
only Shared copies.
7 Since the probe filter does not distinguish Modified from Exclusive [5],
it is not readily possible to differentiate between Probe Hit M and Probe
Hit E. Thus, MuW and Owned are potentially both mapped to Owned in the
cache and differ only in the directory state (EM for MuW and O for Owned).

The already available benchmarks support x86 64 processors
up to Intel Westmere and AMD Istanbul/Magny-Cours. Bandwidth
measurements are limited to 128 Bit SIMD instructions. Further-
more, the coherence state control mechanism does only support
the states Exclusive, Modified, and Shared. In order to thoroughly
analyze the more recent processors and more complex system
topologies examined in this paper, the following features have been
added:

• support for the coherence states Owned and Forward
• extended affinity control to allow independent CPU and mem-

ory affinity in order to better analyze NUMA characteristics
• support for 256 Bit instructions in bandwidth measurements

In order to measure the performance of accesses to a certain
cache or memory from a specific NUMA node, data needs to
be placed in that location prior to the measurement. Therefore,
threads that perform the data placement are started on every core
that should be included in the measurement (typically one core
from every NUMA node). Additional threads are started on cores
that are not included in the measurement in order to generate
shared cache lines without involving the threads that participate
in the measurement. The cache level is determined by the data
set size. The NUMA node of the data is defined by the selected
memory affinity of the threads. The coherence states are generated
as follows:

• Modified in caches of core N:
1) core N writing the data (invalidates all other copies)

• Exclusive in caches of core N:
1) core N writing the data to invalidate copies in other caches,
2) core N invalidating its cache using the clflush instruction,
3) core N reading the data

• Shared in caches of core N:
1) core N caching data in Exclusive state,
2) another core reading the data

• Forward in caches of core N:
1) another core caching data in Exclusive state,
2) core N reading the data

• Owned in caches of core N:
1) core N caching data in Modified state,
2) another core reading the data,
3) core N reading the data again

Forward state is only supported on Intel processors. The only
difference is the order of events, resulting in the states (core N/other
core): (S/F) for Shared and (F/S) for Forward. Owned is only
available on AMD processors. The sequence that generates the
Owned state is compatible with the original MOESI protocol as
well as the extended version including the MuW state [16]. In the
MOESI protocol the 3 steps result in the states (core N/other core):

1: (*/*)→ (M/I), 2: (M/I)→ (O/S), 3: no change.
In the extended protocol step 2) and 3) have different results:

1: (*/*)→ (M/I), 2: (M/I)→ (I/MuW), 3: (I/MuW)→ (O/S).
However, the final states are identical.

The result of the Shared state on AMD processors is influenced
by the protocol version. The first step generates the states (E/I)
which the second step changes into (S/S) for the original MOESI
protocol and (S/O) in the extended MOESI protocol. Thus, the
coherence state on the target core is identical in both protocols.
However, the always migrate approach of the extended protocol
results in Owned copies in the caches of the helper thread8.

8 Benchmarks provide an option to invalidate caches of the helper thread.

For the measurement of the aggregated bandwidth [22], one
thread is started on every selected core. The added option to define
the memory affinity of every thread independently from its CPU
affinity can for example be used to allocate all memory from a
specific NUMA node in order to measure the interconnect band-
width. Finally, new measurement routines for 256 Bit AVX in-
structions have been added. They are available for core-to-core
transfers as well as for the aggregated bandwidth benchmark. The
bandwidth is measured for sequential accesses. Thus, the 128 Bit
movdqa instructions could simply be replaced by half as many
256 Bit vmovdqa instructions.

4. Latency Results
In this section we analyze latencies that are associated with ac-
cesses to local and remote caches and main memory in ccNUMA
systems. We use the elaborate data placement and coherence state
control mechanisms described in [21, Sec. IV] to perform a de-
tailed comparison of the different cache coherence protocols. All
measurements are performed by core 0 in node 0.

4.1 Dual socket Intel Sandy Bridge
Figure 4 shows our latency measurements for cache lines in various
locations with different coherence states9 on our dual socket Intel
system. All data passes through the L1 cache and gets evicted
eventually. Thus, depending on the data set size, the cache lines
reside in a certain cache level or–after eviction from the last level
cache–in main memory. The “local” latencies illustrate accesses
from core 0 to data that has previously been allocated and accessed
by core 0. Measurements that are labeled “on chip” refer to data
that has been allocated, accessed, and evicted by other cores on
the same socket that share the L3 cache and the memory controller
with core 0. However, shared caches can track from which core a
cache line originates and trigger coherence state transitions upon
accesses by a different core. Therefore, transfers from the same
location can have different properties. The “other socket” latencies
illustrate accesses to data that has been allocated and accessed by a
core on the other socket. Table 2 summarizes the results.

On-chip transfers are handled by the inclusive L3 cache without
sending a request to the home node. Modified cache lines from
another core’s L1 or L2 cache are forwarded by the respective core.
If Modified data is evicted it is written back to the L3 that delivers
Modified cache lines that are not present in any core’s caches. The
L3 latency is 15 ns. Exclusive cache lines are always delivered by
the L3 cache. However, if a line has been placed in the L3 cache by
another core the latency is higher. Since Exclusive lines are silently
evicted, it is not known if the line is still present in the core’s L1 or
L2. Thus, the core that originally read the data needs to be probed.
In both shared cases–Shared and Forward–two cores on the die
accessed the data. They might be silently evicted as well, but the
L3 data is guaranteed to be valid as the cores can not modify shared
cache lines unnoticed. Thus, shared cache lines are delivered by the
L3 cache without probe.

9 hardware prefetcher disabled for Shared and Forward

coherence latency in ns

state local on-chip other socket
L1 L2 L1 L2 L3 L1 L2 L3

modified

1.5 4.6

40.4 38.1 15 123 - 140
exclusive 33.8

87.3forward 15shared

Table 2. Latencies for accesses to various memory locations on the
dual socket Intel Sandy Bridge system

(a) Modified (b) Exclusive

(c) Forward (d) Shared

Figure 4. Latency of memory accesses with different coherence states on a two socket Intel Sandy Bridge system

Clean data is delivered by the remote L3 cache with a latency of
87.3 ns. In Figure 4c and 4d, the L3 cache will be in state Forward10

as one of the cores on the die performed the last access. Accessing
the cache lines therefore triggers a transition from Forward to
Shared in the second socket that includes a notification to the core
that has the Forward copy. Thus, the latency is the same as for
Exclusive cache lines that require a probe as well. Dirty cache
lines are written back to memory when transferred to the other
socket. The latency of 123 - 140 ns depends on the amount of
accesses11. The memory latency is 81 ns for local and 133 ns for
remote accesses.

4.2 Quad socket AMD Bulldozer
Figure 5 shows latency measurements for cache lines in various
locations12 with different coherence states on our AMD system.
The meaning of “local” and “on-chip” latencies introduced in 4.1
also applies to Figure 5. “2nd core” denotes the sibling core within
the same module. Results for “node n” show the characteristics of
accesses to data allocated and accessed by cores in other NUMA
nodes. Node 1 is the second die within the package of node 0. The
other nodes are in other sockets with node 2/4/6 being one hop and
node 3/5/7 being two hops away. The creation of the coherence
states Owned and Shared involves additional accesses performed
by another (third) core, meaning that multiple copies of a cache
line can exist simultaneously. Therefore, probes of other nodes can
be required even if a nearby copy of a cache line is available.

10 a third socket would be required to create a Shared copy in a remote L3
11 default 1024 accesses, fewer for small data set sizes
12 L1 cache latencies are not available due to the size of only 16 KB

Latency of on-chip transfers
Coherence between the two cores in a compute unit is ensured
by the shared L2 cache. The latency of accesses to Modified and
Exclusive cache lines varies depending on which core has placed
the data in the L2 cache. For cache lines that have been evicted by
the core itself the latency is 9.1 ns (20 cycles). Accessing a cache
line that has been evicted from the other core requires 19.5 ns,
which indicates that the second core’s L1 is probed. Thus, the L2
cache is apparently not notified when cache lines are evicted from
the L1 cache. Consequently, a probe is necessary if the 2nd core
could still have a copy of the line that requires a state transition to
revoke the write permission (E→S, M→I). If the cache line is in
Shared or Owned state, it can be read directly as no state transition
would be required even if the other core still had a copy.

If no valid copy is found within the compute unit, a request
is sent to the system request interface. Cache lines in the L3 are
forwarded from the L3 to the requesting core within 27.3 ns. In case
of an L3 miss, coherence is maintained by the memory controllers
as the non-inclusive L3 does not contain complete information
which cache lines are present in other compute units. Modified,
Exclusive, and Owned cache lines are forwarded by the compute
unit that holds the line upon receiving the probe request from the
memory controller (data response). Although a copy is available on
the chip, the latency of 89 ns for such a transfer is slightly higher
than the local memory latency13.

13 In the depicted scenarios data in a cache of core N is always allocated
from the local memory of core N. The latency would be even higher if
the data would be allocated from another node as the request would be
forwarded to and send back by the home node.

(a) Modified (b) Exclusive

(c) Owned, shared copy in node 7 (d) Shared, shared copy in node 7

Figure 5. Latency of memory accesses with different coherence states on a four socket AMD Bulldozer system.

In the example shown in Figure 5d the latency of case “on chip”
is approximately 180 ns which is much higher than for cache lines
in other coherence states. The reason for this behavior is that Shared
cache lines are not forwarded to the requesting core. Instead, the
latency depends on the distance to the cache that holds an Owned
copy or the distance to the main memory if no Owned copy exists.
The sequence we use to generate the Shared state (see Section 3.3)
would result in two Shared copies according to the original MOESI
protocol. The HT Assist would indicate that the cache line is shared
between multiple nodes, filter the probe request [5], and the valid
data from local memory would be returned. This is obviously not
the case. Instead, the data is forwarded from another cache.

The observed behavior can be explained by the protocol modifi-
cations described in [16] (see Figure 3). At first core 2 generates an
Exclusive copy in its cache. The following read request by core 63
results in a transition to Shared in core 2. However, an Owned copy
is inserted in core 63 (node 7) according to the always migrate ap-
proach in the revised coherence protocol. Consequently, node 7–
that the probe filter entry identifies as owner of the cache line–is
probed instead of forwarding the valid copy on the chip or using the
valid data from local memory This requires four additional trans-
fers via HyperTransport, two to forward the request to node 7 and
two to send back the data response.

Latency of remote cache accesses
We now discuss the node 1 (same socket, different die), node 2/4/6
(other socket, one hop away), and node 3/5/7 (other socket, two
hops away) results depicted in Figure 5. Similar to on-chip trans-
fers, cache lines in Modified, Exclusive, or Owned state are for-

warded to the requesting core. However, the latency increases be-
cause of the following HyperTransport transfers:

1: send request to home node

2: forward request to node that owns the line

3: send response to requesting node

In the measurements shown in Figures 5a, 5b, and 5c HT Assist
indicates a direct probe. As the data is cached in the home node,
step two is not required. Thus, nodes that are one hop away require
two transfers: one to send the request (8 Byte) and one to send
back the response (4 Byte header + 64 Byte data) [11]. Whether
transfers occur between dies in the same socket (node 1) or between
sockets (node 2/4/6) only slightly influences the measured latencies
of 129.1 ns or 136.3 ns, respectively. Nodes that are two hops away
require four transfers what increases the latency to 178 ns.

The different latencies can be explained based on the system
design and a few fundamental latency numbers listed in Table 3.
Transmission times have been calculated based on 8 Byte for the
request, 68 Byte for the response and the data rates of 12.8 GB/s
or 6.4 GB/s for the different link width at the HyperTransport link
speed of 6.4 GT/s, e.g. 68Byte/12.8Byte/ns = 5.31ns. Based
on these calculated transmission times and the measured roundtrip
times we derive the latency column, e.g. (40.5ns − 0.62ns −
5.31ns)/2 = 17.28ns. We then carry over the total column
(one-way latency numbers) of Table 3 to Table 4 and combine
these numbers with our knowledge of the NUMA topology (see
Figure 2b) to calculate the resulting HyperTransport transfer times
for different distributions of the involved nodes within the two fully

transfer latency transmission total roundtrip

near request 17.28 ns 0.62 ns 17.9 ns 40.5 nsresponse 5.31 ns 22.6 ns

far request 18.56 ns 1.25 ns 19.8 ns 49 nsresponse 10.62 ns 29.2 ns

Table 3. HT one-way latency and transmission times and two-way
(roundtrip) total latencies for transfers between dies in one socket
(near) and between dies in different sockets (far)

involved transfers [ns] ttranssockets subsets 17.9 22.6 19.8 29.2

1 1 0 0 0 0 0 ns
2 1 1 0 0 40.5 ns

2 1 0 0 1 1 49 ns
2 1 1 1 1 89.5 ns

3
1 0 0 2 1 68.8 ns

2 2 0 2 1 104.6 ns
1 1 109.3 ns

Table 4. HT transfer times for remote cache accesses

connected subsets. These numbers explain for example the increase
of total access latency to another L2 cache from 88.6 ns for the on-
chip case to 178 ns for nodes that are two hops away (see Figure 5a,
node 3/5/7): the difference is 89.5 ns, resulting from one near and
one far hop in each direction (see Table 3).

If the cache lines are in state Shared (see Figure 5d), the sit-
uation is more complex as the node that holds the second copy
(Owned state) has to be probed as well. The latency in this case
depends on the distribution of the three participating cores among
the NUMA nodes. If node 0 (“on chip”), node 1, node 6, or node 7
is the home node, two sockets are involved, resulting in four Hyper-
Transport transfers to forward the request and receive the response
(see Figure 6a). If the home node is in a third socket (“node 2/4”
and “node 3/5”), five transfers are necessary (see Figure 6b). The
latency therefore increases to 178 ns (88.6 + 89.5) or 198 ns (88.6
+ 109.3) according to Table 4 and consistent to Figure 5d. Lower
latencies are possible if the Owned copy is closer to the requestor.

The difference between local and remote L3 accesses is higher
than the HyperTransport latency, as the crossbar and the probe filter
check also add latency. For Modified and Owned cache lines, the
data placement works as expected. However, unmodified (Shared
or Exclusive) data is evicted earlier than intended from the remote
L3 caches. The latency therefore approaches the respective memory
latency for increasing data set sizes. We argue that this results
from a hardware detection of an inefficient L3 usage of the data
placement mechanism.

Node 1

(home node)

Node 0

(Shared)

Node 3

Node 2

Node 5

Node 4

Node 7

(Shared)

Node 6

send/forward request response

(a) 3 nodes spanning 2 subsets in 2
sockets (89.5 ns case in Table 4)

Node 1

Node 0

(Shared)

Node 3

Node 2

(home node)

Node 5

Node 4

Node 7

(Shared)

Node 6

send/forward request response

(b) 3 nodes spanning 2 subsets in 3
sockets (109.3 ns case in Table 4)

Figure 6. Three-node HyperTransport transfer scenarios

location latency in ns
L2 L3 RAM

local 9.1
27.3 82.32nd core 19.5

on-chip 88.6
2nd die in MCM 129 116 133

other socket, 1 hop 136 123 146
other socket, 2 hops 178 164 187

including probe (max) 198 185 -

Table 5. Latencies for accesses to various memory locations on the
quad socket AMD Bulldozer system

Main memory latency
The HT Assist strongly influences the memory latencies. Despite
the increased HyperTransport latencies of the four socket config-
uration, requests to local memory are on the same level as on the
two socket system with 82.3 ns (see Table 5). If a probe request had
to be broadcasted, the latency of local memory accesses would be
close to the 164 ns that are required for accessing the farthest L3.
Instead, it can be read directly from memory as the HT Assist filters
the request.

The difference between local and remote memory latency is
higher than what can be explained according to Table 4. The gap
between intra- and inter-socket transfers increases as well. We
attribute this to subtle differences regarding the amount of probe
responses. In case of cache hits the DRAM request is canceled [5]
and a single data response is send back to the requesting core. If
the data is sent from memory, there seems to be an additional probe
response to indicate that data is not cached. The transfer latency of
the second package increases the latency of remote accesses.

5. Bandwidth Results
In this Section we analyze the available bandwidths of local and
remote caches as well as main memory on our ccNUMA test
systems.

5.1 Dual socket Intel Sandy Bridge
Figure 7 shows the single threaded bandwidths that are available
on the Intel system. We measure a L1 bandwidth of 82.3 GB/s,
close to the theoretical peak performance for two 128 Bit loads per
cycle at 2.6 GHz. The L2 cache sends data with 46.8 GB/s. The
shared L3 cache provides a bandwidth of 24.4 GB/s for requests
that it can service without probing other cores or 18.7 GB/s if
probes are required (Exclusive case). Modified cache lines from
other cores’ L1 and L2 caches can be read with 8.1 and 11.2 GB/s
while Exclusive cache lines are delivered faster by the L3 cache.
The main memory read bandwidth is 11.7 for local and 7.8 GB/s
for remote accesses.

Table 6 compares the memory bandwidth for local and remote
accesses via QPI. Local as well as remote bandwidths are influ-
enced by the power management on the second socket. If the other
socket is idle, the local memory bandwidth is 39.7 GB/s while it is
42.2 GB/s if at least one core is active in the other socket. The im-

mem- hops node1 idle node1 active
bind 1 thrd 8 thrd 1 thrd 8 thrd
node0 0 11.7 39,7 12.9 42.2
node1 1 7.7 18.7 8.6 23.6

Table 6. Read bandwidths in GB/s for one or eight cores running
on node0 reading memory from different nodes on the two socket
Intel Sandy Bridge system

(a) Modified (b) Exclusive

Figure 7. Single threaded read bandwidth on a two socket Intel Sandy Bridge system

pact on the bandwidth of remote memory accesses is even greater,
as it drops from 23.6 to 18.7 GB/s (-20.7%) if the second socket
is idle. The two QPI links are not wide enough to fully utilize the
remote bandwidth. They provide a raw bandwidth of 32 GB/s in
each direction of which only 23.6 GB/s (73.75%) are reached. This
is caused by the 8 Byte packet headers [12] as well as additional
8 Byte probe request that the remote node–which is the home node
of the data–will send back to check the local L3. Thus, 80 Bytes
are transferred from the remote node to the requesting node for
each 64 Byte cache line. This reduces the achievable bandwidth to
25.6 GB/s, which is almost fully utilized.

Table 7 lists the aggregated memory bandwidth that multiple
concurrently reading cores can achieve. HyperThreading slightly
increases the per-core bandwidth. Moreover, the aggregated L3
bandwidth scales linearly with the core count up to a total of
207 GB/s for read and 140 GB/s for write access. The main mem-
ory read bandwidth of 42.2 GB/s per socket has also improved sig-
nificantly compared to prior microarchitectures from Intel. How-
ever, the theoretical maximum of the four DDR3-1600 channels of
51,2 GB/s is not reached.

5.2 Quad socket AMD Bulldozer
Figure 8 shows the read bandwidth that a single thread can achieve
for data transfers from various locations within the memory subsys-
tem. The shared L2 cache provides 22.5 GB/s for Exclusive cache
lines that a core evicted itself, or 19.6 GB/s for data evicted by the
second core in the MCM which–similar to the different latencies–
can be attributed to the additional probes of the other core. The on-

threads cores
bandwidth in GB/s
L3 memory

read write read write
1 1 24.4 17.8 11.7 9.1
2 26.5 18.3 13.4 9.3
4 2 52.8 36.4 25.7 17.3
6 3 78-7 54.2 34.3 19.0
8 4 104.5 72.0 38.1 19.2

12 6 156.1 107.0 38.8 18.8
16 8 207.1 140.5 39.7 18.4

Table 7. Bandwidth scaling on the 2P Intel Sandy Bridge system:
The L3 cache bandwidth scales almost linear with the number
of used cores. The main memory bandwidth can almost be fully
utilized using only half of the cores.

chip L3 cache delivers data with 9.8 GB/s, which is only slightly
faster than the 7.8 GB/s from local memory. Transfers from other
compute units only achieve a bandwidth of 6.9 GB/s.

Table 8 shows the read bandwidths that are available via the Hy-
perTransport links for a single thread as well as for eight concur-
rent threads on one die. The 16 Bit link that connects the dies does
only transfer data with 5.1 GB/s and 5.9 GB/s, respectively. This is
much less than the 12.04 GB/s14 that the link should provide and
not nearly enough to fully utilize the remote memory bandwidth of
15.8 GB/s. For accesses to other sockets, the available bandwidth is
even lower. Memory from node 2 can be read with up to 4.5 GB/s
while node 4 and node 6 only provide 3.2 GB/s. The distance is
one hop in both cases, and the link width is identical as well. How-
ever, node 2 is connected to a HyperTransport link with one deac-
tivated sublink15 while node 4 and node 6 are connected to a link
that has both sublinks activated [18]. Therefore, the connection to
node 2 supports more outstanding requests, as the request queue is
not partitioned. As a result, even the two-hop connection to node 3
(via node 2) provides more bandwidth (4 GB/s) than the one-hop
connections to node 4 or 6. The two-hop connections to node 5 or 7
provide only half of that bandwidth (2 GB/s) because of the fewer
number of outstanding requests. This shows that the performance
is severely limited by outstanding HyperTransport requests.

14 12.8 GB/s raw bandwidth per direction, 4 Byte read response per 64 Byte
15 The 8 Bit link between the dies is disabled (see Figure 1b)

Figure 8. Single threaded read bandwidth for cached data in state
Exclusive on the AMD Bulldozer system

memory hops minimal bandwidth
allocated at link width 1 thread 8 threads

node 0 0 - 7.5 15.8
node 1

1
16 Bit 5.1 5.9

node 2

8 Bit

4.3 4.5
node 4/6 3.2 3.2
node 3 2 3.6 4.0

node 5/7 2.0 2.0

Table 8. HyperTransport bandwidths in GB/s, one or eight threads
running on node 0, reading from main memory of different nodes

threads compute bandwidth in GB/s

units L3 memory
read write read write

1 1 9.8 5.9 7.5 4.5
2 10.6 6.8 9.0 4.8
4 2 18.3 13.7 15.4

6.26 3 25.0 20.5 16.5
8 4 31.3 27.2 15.8

Table 9. Bandwidth scaling on the AMD Opteron processor: The
L3 read bandwidth for one core is only slightly higher than the main
memory bandwidth. However, the L3 bandwidth scales better with
increasing core counts and provides higher write bandwidths.

Figure 9 compares the local read and write bandwidths of a
single compute unit. With 33.0, 11.1, 5.9, and 4.5 GB/s the single
threaded write bandwidths are significantly lower than the respec-
tive read bandwidths of 59.2, 22.5, 9.8, and 7.8 GB/s. The Level
1 write bandwidth should be limited by the L2 bandwidth because
of the write through policy. However, for continuous writes to a
memory region smaller than 4 KiB the write bandwidth exceeds
the usual L2 performance. This is caused by the so-called Write
Coalescing Cache (WCC) [1, Chapter 2.13] that alleviates the dis-
advantages of a write-through cache design. Interestingly, the L1
read bandwidth does not scale with the number of cores. This is
caused by the limited number of FPU pipelines that can handle the
SIMD loads. In contrast, the L2 read bandwidth increases signifi-
cantly if both cores are used simultaneously, as more outstanding
loads are supported by the two load store units.

Table 9 shows the scaling of the last level cache and main
memory bandwidth with the number of concurrent threads on one
chip. Utilizing both cores of a compute unit slightly increases the

Figure 9. Read and write bandwidth on the AMD Bulldozer sys-
tem. An additional buffer (the Write Coalescing Cache) between
the two L1 caches and the L2 cache reduces the bandwidth limita-
tion of the write-through policy

bandwidths. The L3 bandwidth scales fairly well with the number
of used compute units However, 31.3 GB/s per 8-core die is very
low in comparison to the Intel system. Two compute units can
almost fully utilize the main memory performance. Bandwidths
scale linearly with the number of used dies to 62.6 GB/s of L3 and
31.6 GB/s of main memory read bandwidth per socket. However,
software needs to be NUMA-aware in order to fully utilize the
resources of a single processor.

6. Conclusions
A good understanding of the hierarchical memory system of to-
day’s processors continues to be a key factor to obtain good appli-
cation performance. However, exact performance data is mostly un-
specified for both systems, especially regarding core-to-core trans-
fers and inter-socket communication. This work identifies the fun-
damental performance properties of the latest x86 64 architectures
by Intel and AMD in terms of both latency and bandwidth. Our
benchmarks reveal a particularly unique set of performance num-
bers by considering the coherence state of cached data. We thereby
document indispensable data for other scientists that strive to in-
crease the performance of their applications or to model the behav-
ior and performance of current CPUs [7, 17]. Moreover, our band-
width scalability numbers are highly relevant for dynamic voltage
and frequency scaling (DVFS) and dynamic concurrency throttling
(DCT) based approaches that have become popular for energy effi-
ciency optimizations [6, 22, 23].

We find the AMD Bulldozer architecture with its module con-
cept and two independent dies per socket to be much more complex
than Intel’s Sandy Bridge design, creating a vast amount of dif-
ferent latency and bandwidth numbers. While latency figures are
mostly in line with our expectations, several observed bandwidths
are surprisingly low. The accumulated L3 cache bandwidth of a
full Bulldozer die (8 cores) is close to the L3 bandwidth of a single
Sandy Bridge core. The L3 cache bandwidth also scales better with
the core count on the Intel system. Although AMD’s L2 cache is
very large, its performance is only on par with Intel’s L3 cache in
a per-core comparison. The accumulated L3 bandwidth of a Bull-
dozer socket exceeds the main memory bandwidth only by a factor
of two, compared to more than a factor of five on the Intel system.
This is even more noteworthy knowing that the Sandy Bridge sys-
tem is also superior in terms of main memory bandwidth per socket.
While both interconnect technologies fail to fully utilize the mem-
ory bandwidth of other NUMA nodes, the HyperTransport results
are much more disappointing. The transfer rate between the sock-
ets in the Intel system is four times higher than the transfer rate
between the two dies within the AMD processor and more than ten
times more effective than some of the two-hop connections in the
AMD topology. Finally, on-die latencies are much better on Sandy
Bridge, mostly due to the inclusive L3 cache design.

Overall, we attribute a significant portion of Intel’s current ad-
vantages regarding application-level per-socket performance to the
differences in the memory hierarchy. The L3 cache provides a
high bandwidth per core that also scales linearly with the amount
of cores. The QuickPath interconnect also provides a relatively
high bandwidth for remote memory accesses. In contrast, AMD’s
memory subsystem severely limits the achievable processing power
of the compute units in memory-intensive applications. Further-
more, parallel programs need to be exceedingly NUMA-conform to
avoid being limited by the unexpectedly low HyperTransport per-
formance for certain connections.

Acknowledgment This work has been funded by the Bundesmin-
isterium für Bildung und Forschung via the research project Cool-
Silicon (BMBF 16N10186).

References
[1] Advanced Micro Devices. Software Optimization Guide for AMD

Family 15h Processors, Rev 3.06, January 2012.

[2] Advanced Micro Devices. BIOS and Kernel Developer’s Guide
(BKDG) for AMD Family 15h Models 00h-0Fh Processors, Rev 3.12,
October 11, 2012.

[3] Advanced Micro Devices. AMD64 Architecture Programmer’s Man-
ual Volume 2: System Programming, Rev. 3.22, September, 2012.

[4] Virat Agarwal, Fabrizio Petrini, Davide Pasetto, and David A. Bader.
Scalable graph exploration on multicore processors. In Proceedings of
the 2010 ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’10, pages 1–11,
Washington, DC, USA, 2010. IEEE Computer Society.

[5] Pat Conway, Nathan Kalyanasundharam, Gregg Donley, Kevin Lepak,
and Bill Hughes. Cache hierarchy and memory subsystem of the AMD
Opteron processor. IEEE Micro, 30:16–29, March 2010.

[6] Matthew Curtis-Maury, Ankur Shah, Filip Blagojevic, Dimitrios S.
Nikolopoulos, Bronis R. de Supinski, and Martin Schulz. Predic-
tion models for multi-dimensional power-performance optimization
on many cores. In Proceedings of the 17th international conference on
Parallel architectures and compilation techniques, PACT ’08, pages
250–259. ACM, 2008.

[7] Jianbin Fang, Henk Sips, LiLun Zhang, Chuanfu Xu, Yonggang Che,
and Ana Lucia Varbanescu. Test-driving intel xeon phi. In Proceed-
ings of the 5th ACM/SPEC International Conference on Performance
Engineering, ICPE ’14, pages 137–148, New York, NY, USA, 2014.
ACM.

[8] D. Hackenberg, D. Molka, and W. E. Nagel. Comparing cache archi-
tectures and coherency protocols on x86-64 multicore SMP systems.
In MICRO 42: Proceedings of the 42nd Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, pages 413–422, New York,
NY, USA, 2009. ACM.

[9] Cristina Hristea, Daniel Lenoski, and John Keen. Measuring memory
hierarchy performance of cache-coherent multiprocessors using micro
benchmarks. In Proceedings of the 1997 ACM/IEEE conference on
Supercomputing, Supercomputing ’97, pages 1–12, New York, NY,
USA, 1997. ACM.

[10] Herbert H. J. Hum and James R. Goodman. Forward state for use in
cache coherency in a multiprocessor system, 07 2005.

[11] Hypertransport Technology Consortium. HyperTransport I/O Link
Specification, revision 3.10c edition, June 2010.

[12] Intel. An Introduction to the Intel QuickPath Interconnect, January
2009.

[13] Intel. Intel Xeon Processor E5-1600/E5-2600/E5-4600 Product Fami-
lies Datasheet - Volume One, May 2012. Reference Number: 326508,
Revision: 002.

[14] Intel Corporation. Intel Xeon Processor E5-2600 Product Family
Uncore Performance Monitoring Guide, March 2012.

[15] Guido Juckeland, Michael Kluge, Wolfgang E. Nagel, and Stefan
Pflüger. Performance analysis with BenchIT: Portable, flexible, easy
to use. In Proceedings of the International Conference on Quantitative
Evaluation of Systems, pages 320–321, 2004.

[16] Kevin M. Lepak, Vydhyanathan Kalyanasundharam, William A.
Hughes, Benjamin Tsien, and Greggory D. Donley. Method and appa-
ratus for accelerated shared data migration, 06 2012.

[17] S. Li, T. Hoefler, and M. Snir. NUMA-Aware Shared Memory Collec-
tive Communication for MPI. In Proceedings of the 22nd international
symposium on High-performance parallel and distributed computing,
pages 85–96. ACM, Jun. 2013.

[18] Mario Ludwig. Performance-analyse von amd bulldozer-prozessoren,
7 2012. bachelor thesis, Technische Universität Dresden.

[19] John D. McCalpin. Memory bandwidth and machine balance in cur-
rent high performance computers. IEEE Computer Society Technical
Committee on Computer Architecture (TCCA) Newsletter, pages 19–
25, 12 1995.

[20] Larry McVoy and Carl Staelin. lmbench: portable tools for per-
formance analysis. In Proceedings of the 1996 annual conference
on USENIX Annual Technical Conference, ATEC ’96, pages 23–23,
Berkeley, CA, USA, 1996. USENIX Association.

[21] D. Molka, D. Hackenberg, R. Schöne, and M. S. Müller. Memory
performance and cache coherency effects on an Intel Nehalem multi-
processor system. In PACT ’09: Proceedings of the 2009 18th Inter-
national Conference on Parallel Architectures and Compilation Tech-
niques, pages 261–270, Washington, DC, USA, 2009. IEEE Computer
Society.

[22] R. Schöne, D. Hackenberg, and D. Molka. Memory performance at re-
duced cpu clock speeds: an analysis of current x86 64 processors. In
Proceedings of the 2012 USENIX conference on Power-Aware Com-
puting and Systems, HotPower’12, pages 9–9, Berkeley, CA, USA,
2012. USENIX Association.

[23] Robert Schöne and Daniel Molka. Integrating performance analysis
and energy efficiency optimizations in a unified environment. Com-
puter Science - Research and Development, pages 1–9, 2013.

[24] Jan Treibig, Georg Hager, and Gerhard Wellein. Likwid: A lightweight
performance-oriented tool suite for x86 multicore environments. In
Proceedings of the 2010 39th International Conference on Paral-
lel Processing Workshops, pages 207–216. IEEE Computer Society,
2010.

[25] Jan Treibig, Georg Hager, and Gerhard Wellein. likwid-bench: An
extensible microbenchmarking platform for x86 multicore compute
nodes. In Tools for High Performance Computing 2011, pages 27–
36. Springer Berlin Heidelberg, 2012.

